Loïc Van Hoorebeeck

March 25, 2019

Loïc Van Hoorebeeck

March 25, 2019

Optical telescope

Radio telescope

- Square Kilometer Array
- Frequency range of [50; 350]MHz
- 130000 antennas spread between 500 stations
- Compared to the best similar instrument :
 - 25% better resolution
 - 8× more sensitive
 - $135 \times$ the survey speed

A first station overview

 $N_a = 256$ antennas irregularly arranged. The Aperture Array Verification System 1 (AAVS1).

Sources : https://www.skatelescope.org

An example of a wired antenna

Sketch of the running of antenna by converting a sine electric current into a EM wave.

Field regions

Calibration of the SKA-low antenna array using drones Radiation Pattern

$$\mathbf{F}(\theta,\varphi) = \lim_{\rho \to \infty} \frac{\mathbf{E}(\rho,\theta,\varphi)}{\max_{\theta,\varphi} \mathbf{E}(\rho,\theta,\varphi)} = F_{\nu} \, \mathbf{e}_{\theta} + F_{h} \, \mathbf{e}_{\varphi}$$

Embedded Element Pattern (EEP)

Radiation pattern when an antenna *i* is on with the other passively terminated.

Sources : T. Zwick - Antennen und Mehrantennensysteme (KIT)

Flight strategies

Calibration procedure

Calibration methods

Formulation as N_a convex optimization problems

$$\min_{\mathbf{c}' \in \mathbb{C}^{N_a}} ||\mathbf{F}_{\mathbf{v}}^i - \bar{\mathbf{F}}_{\mathbf{v}}^i||_2^2 + ||\mathbf{F}_h^i - \bar{\mathbf{F}}_h^i||_2^2 \qquad \forall i = 1 \dots N_a$$

This is a least-square problem and its optimal solution satisfies

$$\begin{pmatrix} \mathbf{B}_{h}^{i} \\ \mathbf{B}_{v}^{i} \end{pmatrix}^{\mathrm{H}} \underbrace{\begin{pmatrix} \mathbf{B}_{h}^{i} \\ \mathbf{B}_{v}^{i} \end{pmatrix}}_{\mathbb{C}^{2 N_{\mathsf{mes}} \times N_{\mathsf{a}}} \underbrace{\mathbf{c}^{i}}_{\mathbb{C}^{N_{\mathsf{a}}}} = \begin{pmatrix} \mathbf{B}_{h}^{i} \\ \mathbf{B}_{v}^{i} \end{pmatrix}^{\mathrm{H}} \underbrace{\begin{pmatrix} \mathbf{F}_{h}^{i} \\ \mathbf{F}_{v}^{i} \end{pmatrix}}_{\mathbb{C}^{N_{\mathsf{a}}}} \qquad \forall i = 1 \dots N_{\mathsf{a}}$$

Error definition in dB

$$e_{\theta,\varphi} = 10\log_{10}\left(\left|\mathbf{F}_{v} - \bar{\mathbf{F}}_{v}\right|^{2} + \left|\mathbf{F}_{h} - \bar{\mathbf{F}}_{h}\right|^{2}\right) - 10\log_{10}\max_{\theta,\varphi}\left\{|\mathbf{F}_{v}|^{2} + |\mathbf{F}_{h}|^{2}\right\}$$

Metrics

 $\begin{array}{ll} \mathsf{Maximum error} & e_{\mathcal{M}} \triangleq \max_{\theta,\varphi} e_{\theta,\varphi} \\ \mathsf{Mean error} & \mu_e \triangleq \mathbb{E}\{e_{\theta,\varphi}\} \end{array}$

Results

Results

Far-field calibration

No flight restriction

- $h \triangleq 1 \text{ km}$ height to reach Fraunhofer distance
- $a = 1.7 \, \text{km}$

Flight strategy	e_M (dB)	$\mu_{e} (dB)$
Spiral	-60.9	-74
Grid	-63.4	-75.5
Cuts	-29.8	-45.3
Random	-60	-74.3
Equi-spaced	-64.3	-76.5

Good behavior for all strategies except cuts

Far-field calibration

200 m flight restriction

• *h* = 1 km

• *a* = 200 m

Small error along the drone path Large error anywhere else

Near-field calibration

• *h* = 10 m

Flight strategy	<i>e_M</i> (dB)	$\mu_e~(dB)$
Spiral	-31.1	-41.3
Grid	-31.72	-42.5
Cuts	-20.6	-31.2
Random	-28.7	-41.0
Equi-spaced	-29.7	-41.1

Better than restricted FF but worse than unrestricted FF

Near Field

Near field

Drone attitude

Max error (dB)	Mean error (dB)	σ_y	σ_p	σ_r	(degrees)
- 48 .14	-57.38	2	2	2	
- 48 .46	-59.62	2	0	0	
-54.32	-65.46	0	2	0	
-54.32	-65.14	0	0	2	

Smaller impact than position noise Error mainly due to yaw angle

Near field

Linear relationship between error and noise-level in dB scale When combined, the error is dominated by the more significant noise

Regularization

Regularization

Mathematical formulation

$$\min_{\mathbf{x} \in \mathbb{R}^n} ||A\mathbf{x} - (\mathbf{b} + \epsilon \mathbf{f})||_2^2$$

with $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{b} \in \mathbb{R}^n$ the data matrix and $\epsilon \mathbf{f}$ the perturbation vector.

A numerical example

Let

$$A = \begin{pmatrix} 0.16 & 0.10 \\ 0.17 & 0.11 \\ 2.02 & 1.29 \end{pmatrix}, \quad \mathbf{x}^{\star} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}, \quad \mathbf{b} = A\mathbf{x}^{\star}$$

with $\mathbf{f} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix}$ a perturbation with $\epsilon = 0.01$.

Moore-Penrose solution is $\mathbf{x}_{\epsilon} = \begin{pmatrix} 7.0 & -8.3 \end{pmatrix}^{T}$.

27

Regularization Regularization type

Tikhonov Truncated SVD (TSVD) Least square minimization with a quadratic inequality constraint (LSQI) Parameter choice strategy

Discrepancy principle Generalized cross-validation (GCD) Quasi-optimality criterion (QO)

Application on SKA-low calibration 40 20 $\mu_{\rm e} \, [{\rm dB}]$ 0 -20 -40 -60 Spiral Grid Cut Random Equi-spaced NF-Cut Non-regularized Tikhonov - GCV Tikhonov - Quasi-optimality TSVD - GCV TSVD - Quasi-optimality LSQI - Discrepancy Principle

27

Regularization Regularization type

Tikhonov

Truncated SVD (TSVD)

Least square minimization with a quadratic inequality constraint (LSQI)

Parameter choice strategy

Discrepancy principle Generalized cross-validation (GCD) Quasi-optimality criterion (QO)

Conclusion and future works

			Non Regularized regularized						
				Tikh-GCV	Tikh-QO	TSVD- GCV	TSVD- QO	LSQI-DP	
		Spiral	56	-27	-35	-11	-40	-45	
	ctec	Grid	44	-43	-34	-42	-39	-8	
tric	Cut	88	-6	-34	-21	-39	31		
	Res	Random	63	-42	-34	-41	-39	-2	
FF		Equi- spaced	24	-43	-35	-43	-39	-43	
	Unrestricted	Spiral Grid Cut Random Equi- spaced	-74 -75 -45 -74 -76						
NF		Spiral Grid Cut Random Equi- spaced	-41 -43 -31 -41 -41	-44	-33	-43	-40	-43	

			Non regu- larized						
				Tikh-GCV	Tikh-QO	TSVD- GCV	TSVD- QO	LSQI-DP	
FF	Restricted	Spiral Grid Cut Random Equi- spaced	56 44 88 63 24	-27 -43 -6 -42 -43	-35 -34 -34 -34 -35	-11 -42 -21 -41 -43	-40 -39 -39 -39 -39	-45 -8 31 -2 -43	
	Unrestricted	Spiral Grid Cut Random Equi- spaced	-74 -75 -45 -74 -76						
NF		Spiral Grid Cut Random Equi- spaced	-41 -43 -31 -41 -41	-44	-33	-43	-40	-43	

Mean Error μ_e with 256 experiments

			Non regu- larized						
				Tikh-GCV	Tikh-QO	TSVD- GCV	TSVD- QO	LSQI-DP	
FF	Restricted	Spiral Grid Cut Random Equi- spaced	56 44 88 63 24	-27 -43 -6 -42 -43	-35 -34 -34 -34 -35	-11 -42 -21 -41 -43	-40 -39 -39 -39 -39	-45 -8 31 -2 -43	
	Unrestricted	Spiral Grid Cut Random Equi- spaced	-74 -75 -45 -74 -76						
NF		Spiral Grid Cut Random Equi- spaced	-41 -43 -31 -41 -41	-44	-33	-43	-40	-43	

Mean Error μ_e with 256 experiments

			Non Regularized						
				Tikh-GCV	Tikh-QO	TSVD- GCV	TSVD- QO	LSQI-DP	
FF	Restricted	Spiral Grid Cut Random Equi-	56 44 88 63 24	-27 -43 -6 -42 -43	-35 -34 -34 -34 -35	-11 -42 -21 -41 -43	-40 -39 -39 -39 -39	-45 -8 31 -2 -43	
	Unrestricted	spaced Spiral Grid Cut Random Equi- spaced	-74 -75 -45 -74 -76						
NF		Spiral Grid Cut Random Equi- spaced	-41 -43 -31 -41 -41	-44	-33	-43	-40	-43	

Mean Error μ_e with 256 experiments

			Non regu- larized						
				Tikh-GCV	Tikh-QO	TSVD- GCV	TSVD- QO	LSQI-DP	
FF	Restricted	Spiral Grid Cut Random Equi- spaced	56 44 88 63 24	-27 -43 -6 -42 -43	-35 -34 -34 -34 -35	-11 -42 -21 -41 -43	-40 -39 -39 -39 -39	-45 -8 31 -2 -43	
	Unrestricted	Spiral Grid Cut Random Equi- spaced	-74 -75 -45 -74 -76						
NF		Spiral Grid Cut Random Equi- spaced	-41 -43 -31 -41 -41	-44	-33	-43	-40	-43	

Mean Error μ_e with 256 experiments

			Non Regularized regularized						
				Tikh-GCV	Tikh-QO	TSVD- GCV	TSVD- QO	LSQI-DP	
	70	Spiral	56	-27	-35	-11	-40	-45	
	cteo	Grid	44	-43	-34	-42	-39	-8	
stric	Cut	88	-6	-34	-21	-39	31		
	Res	Random	63	-42	-34	-41	-39	-2	
FF		Equi- spaced	24	-43	-35	-43	-39	-43	
	Unrestricted	Spiral Grid Cut Random Equi- spaced	-74 -75 -45 -74 -76						
NF		Spiral Grid Cut Random Equi- spaced	-41 -43 - 31 -41 -41	-44	-33	-43	-40	-43	

Mean Error μ_e with 256 experiments

Going further

Extending the model

- Adding other noise sources (e.g. during the transmission)
- Taking finite ground plane effects into account

Generalization to $N_a \neq 256$ antennas

• FF case :
$$N_e \approx \max\{\underbrace{50}_{\text{Sampling the pattern}}, \underbrace{N_a}_{\text{N}_a}\}$$

• NF case : Every experiment yields N_a "independent" measurements \Rightarrow Same behavior for all N_a

Why using an array of antennas ?

- Obtaining a better angular resolution
- Increasing the sensitivity

Interferometry : Emulation of a single larger dish

