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Abstract

The economic dispatch problem is a fundamental problem in power system operations.
An extensive body of literature has focused on providing fast and robust algorithms for
solving the various instances of the economic dispatch. In order to capture physical ef-
fects such as the power losses of the network or the valve-point loading effect of combined
cycle gas turbines, non-convex models of the economic dispatch have been considered.
However, these features of the problem render the convergence analysis more challeng-
ing, and few methods in the literature provide insights on the global optimality of the
derived solution. In this work, we propose an algorithm that efficiently provides a feasi-
ble solution, along with a lower bound, to a non-smooth and non-convex instance of the
economic dispatch problem. We test our method on extensively studied test cases.

Keywords: Non-convex dispatch, Riemannian descent, Non-smooth optimization

1. Introduction

With the recent large-scale integration of renewable energy sources in the energy mix,
there is an increasing need for flexible units that can counteract the inevitable uncertain-
ties on the supply side of power systems. Therefore, large gas units such as combined
cycle gas turbines (CCGT) also become an important resource in modern power system
operations, due to their ability to quickly respond to renewable supply fluctuations. The
European Commission foresees a slight increase in gas-based electricity production for
the 2030 European power mix and a stabilisation around 20 % for 2050 [11]. Thus, the
accurate representation of the constraints and the complex cost function of such units is
becoming increasingly important in system operations, see, e.g., [22].

The economic dispatch (ED) problem aims at the optimal scheduling of committed
units to serve a given load profile at minimal cost. Two sets of constraints are considered.
On the one hand, operational constraints ensure the feasibility of the dispatch and include
limited power ranges, ramp rates, and prohibited operation zones. On the other hand,
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balance constraints require that the supply meets the load and guarantee that enough
reserves are available.

In the economic dispatch problem, only the variable part of the cost function is
considered because the units are already committed. Therefore, for gas units, the cost is
linked to the fuel that is being consumed for producing power. This input-output function
is often modelled as a smooth convex quadratic function. However, such a function fails
to accurately model large CCGT units due to the valve-point effect (VPE) [8]. The
valve-point effect refers to the increase of throttling losses when operating a turbine off
a valve-point, i.e., just after the opening of the valve. Consequently, the unit operates
most efficiently when loaded at a valve-point, that is just before the next valve is open.
A non-smooth and non-convex function, see Eq. (1), is commonly used for modelling
this effect. This non-convexity allows for the existence of a plethora of local minima and
the non-smoothness of the objective function prevents the use of conventional derivative-
based techniques.

In order to solve this problem, the literature mostly follows two approaches: i)
randomized heuristics which aim at efficiently spanning the search space in order to
rapidly converge to a good solution, and ii) deterministic methods based on approx-
imations of the objective and the feasible set, or using logarithmic barrier functions.
Instances of i) are numerous and include imperialist algorithms [24, 42], other evolu-
tionary algorithms [33, 27, 26, 4, 23], genetic algorithms [25], and simulated annealing
algorithms [39, 30]. Examples of ii) include [29, 41, 28], where the authors use approx-
imations of the objective without providing lower bounds, [31, 5] using gradient-based
algorithms with logarithmic barriers, and previous work by the authors [36, 35] where
power losses are neglected.

Losses are another source of non-convexity of growing relevance, due to the advent
of renewable resources. Concretely, renewable resources are typically located wherever it
is most geographically favorable, e.g., in sites with high wind potential. These locations
often happen to be far from load centers. By consequence, the role of networks has
become increasingly important in recent years in delivering power from remote locations
to load centers [19, 2], and correspondingly losses have increased, thereby motivating a
need to represent such losses more accurately. Network constraints require, in principle,
the consideration of the AC power flow equations, which are highly non-linear and non-
convex. A more tractable alternative which captures an essential aspect of network
operations is to focus on losses. In this context, Kron [18] introduced a quadratic model
for the power losses which has been popularized by Kirchmayer [17].

As these above-mentioned methods become more and more sophisticated, and com-
putational power increases, it becomes easier to compute low-cost solutions. However,
the stopping criteria of the aforementioned methods often remain basic. Indeed, without
knowledge of a sufficiently good lower bound, it may be impossible to know if the best
cost found so far is within a prescribed accuracy of the globally optimal cost. Moreover,
in the absence of a suitable convergence analysis, it is unknown if, given enough time,
the algorithm is able to find the globally optimal cost within any prescribed accuracy.

This motivates the present study, which extends previous contributions by the au-
thors [36, 35] to non-convex feasible sets due to power losses, and develops a method that
is feasible—in the sense that all the iterates satisfy the constraints. Hence, it is possible
to stop early and save computational power. The method also returns lower bounds
that rely on the solution of mixed integer programming problems, defined with a piece-
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wise approximation of the objective. Such approximations have been studied originally
in [43, 16, 40], then in [29, 1, 28].

Since lower and upper bounds are computed by our proposed method, it is possible to
detect whether a prescribed accuracy is attained, and henceforth to stop the algorithm
early. Alternatively, if the difference between the upper and lower bounds does not meet
the prescribed accuracy sufficiently quickly, then the user can decide to mobilize more
computational power. The latter observation exploits the fact that the algorithms that
we propose in the present work are parallelizable. This favorable situation contrasts with
most existing algorithms where a sufficiently good lower bound is unavailable, making it
impossible to know if the best cost found so far is within a prescribed accuracy of the
globally optimal cost.

The contributions of this work are the following. We first describe how to obtain an
accurate approximation of the convex hull of the feasible set of an economic dispatch
problem with quadratic power losses. Secondly, we extend the local method of [5] to
accommodate the multi-period economic dispatch problem. This local method is a Rie-
mannian subgradient method which takes advantage of the inherent characterization of
the feasible set as a Riemannian manifold. Lastly, we show how to leverage this convex-
hull approximation of the feasible set—or convex relaxation—in our previous work [35]
in order to obtain a good lower bound to the global solution, and how to combine this
approach with the extended local method in order to provide a high-quality objective.

The paper is organized as follows. Section 2 describes the non-smooth and non-convex
optimization problem of interest, namely the economic dispatch problem with valve-point
effects and quadratic losses. Different surrogate optimization problems, that will be used
throughout this paper in order to tackle the main problem, are also introduced, and a
study of the feasible set as well as the proposed relaxation is performed. The methods
employed in our proposed approach are detailed in section 3: we briefly describe the
adaptive piecewise linearization method from [36], as well as the extended Riemannian
subgradient method. We also provide ingredients of differential geometry that are re-
quired for the subgradient method. Section 4 gathers the results of the methods for
several test cases and compares the objectives with state-of-the-art methods. The lower
bounds derived from our method allow us to assess how close the solution of our pro-
posed method and other methods in the literature are to the optimal solution. Finally,
conclusions are drawn in section 5.

2. Problem formulation

This section is organized as follows. After a brief description of the notation used
in our paper, we introduce the main problem that is considered in this work in § 2.2.
The full method is then outlined in § 2.3. This method depends on several auxiliary
optimization problems which are introduced in § 2.4: the surrogate problems, providing
lower bounds to the main problem; the feasibility problems, which are used to find a
feasible solution, or to prove that no feasible solution exists; and finally the optimization
problems that are used for obtaining a relaxation of the feasible set. Lastly, the topology
of the feasible set is studied in § 2.5.
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2.1. Notation
All vectors in the paper are indicated in bold, e.g., x. An implicit partition is used for

dealing with double indices: if x depends on both indices g “ 1, . . . , |G| and t “ 1, . . . , |T |,
then x is partitioned as follows,

x “
`

x11 . . . x|G|1 x12 . . . x|G||T |
˘ᵀ
“

`

x1
ᵀ x2

ᵀ . . . x|T |
ᵀ
˘ᵀ
.

The index g stands for the generator unit g listed in the set G and the index t stands for
the time step t listed in the set T .

2.2. Main problem: Economic Dispatch with VPE and Transmission Losses
The main problem, denoted as (P), aims at minimizing fuel cost, f , which is defined

as the sum of the production cost of every generator unit fg at each time step. The
production of unit g at time step t is denoted as pgt. A quadratic function is often used
for modeling the fuel cost of a given unit. However, this fails to model the inherent
non-convex characteristic of the problem when the VPE is taken into account. Following
the literature [7, 13, 37], we model the cost function as the sum of a smooth quadratic
part, fQ

g , and a non-smooth rectified sine aimed at capturing the VPE, fVPE
g :

fgppgtq “ Agp
2
gt `Bgpgt ` Cg

looooooooooomooooooooooon

:“fQ
g ppgtq

`
ˇ

ˇDg sinEgppgt ´ P´g q
ˇ

ˇ

looooooooooooomooooooooooooon

:“fVPE
g ppgtq

. (1)

Here, P´g is the minimum power production of generator g and Ag, Bg, Cg, Dg, Eg are
parameters.

The full objective reads
fppq “

ÿ

tPT

ÿ

gPG

fgppgtq , (2)

and a single term, fgppgtq, is depicted in Fig. 1.
The constraints considered in this work are the following:

• Power range limits

P´g ď pgt ď P`g @g “ 1, . . . , |G| , t “ 1, . . . , |T | , (3)

where P´g and P`g are the minimum and maximum power output of unit g.

• Ramp rate restrictions

R´g ď pgt ´ pgpt´1q ď R`g @g “ 1, . . . , |G| , t “ 2, . . . , |T | , (4)

where R´g and R`g are the ramp-down and ramp-up rates of unit g, respectively.

• Power balance
ÿ

gPG

pgt “ PD
t ` pt

ᵀBpt `B0pt `B00
looooooooooooomooooooooooooon

:“ploss
t

@ t “ 1 . . . |T | . (5)
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Figure 1: Illustration of a single term of the main and surrogate objectives.

where, PD
t is the demand and ploss

t is an approximation of the transmission losses
in period t. This approximation is obtained using Kron’s formula [32], for a given
matrix B, vector B0 and parameter B00. The matrix B, which contains the loss-
coefficients, is symmetric, because it is obtained as the real part of a Hermitian
matrix. However, this matrix is not necessarily positive definite [32], e.g., the
matrix is indefinite for the 10-unit test case in § 4.2. These coefficients are discussed
in § 2.5.

• Spinning reserve constraints
The reserve requirements are modeled as in [26], @t P T :

˜

∆p1qt “
ÿ

gPG

P`g ´ pP
D
t ` p

loss
t ` P S

t q

¸

ě 0 (6)

˜

∆p2qt “
ÿ

gPG

min pP`g ´ pgt, R`g q ´ P S
t

¸

ě 0 (7)

˜

∆p3qt “
ÿ

gPG

min pP`g ´ pgt,
R`g
6 q ´

P S
t

6

¸

ě 0 (8)

for a given reserve requirement P S
t .

Eqs. (6) and (7) model the requirement for the spinning reserve that can respond
within one hour. Eq. (8) models the requirement for the spinning reserve that can
respond within 10 minutes. Note that, if the losses are neglected, i.e., ploss

t “ 0,
then Eq. (6) does not depend on decision variables and is therefore simply a test
on the feasibility of the problem. This feasibility test is used in § 4.2 to show that
a given problem is infeasible.
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Taking all these constraints into account, the optimization problem at hand reads

min
p

fppq “
ÿ

tPT

ÿ

gPG

fgppgtq ,

s.t. p3q ´ p8q .
(P)

This is a non-smooth and non-convex continuous optimization problem. The feasible
set is the intersection of a polytope—Eqs. (3), (4) and (6) to (8)—and a quadratic
hypersurface—Eq. (5)—which is further described in § 2.5.

2.3. Outline of the Method
Before introducing the other optimization problems that will be used in the remainder

of the paper, we first outline the full method. This method, denoted as APLA-RSG, is
depicted in Fig. 2 and consists of the following steps:

1. Obtaining a lower bound and an initial (infeasible) candidate through the solution
of a relaxation of (P);

2. Projecting this candidate onto the feasible set;
3. Improving the projected candidate with a local search.

The first step is based on an adaptive piecewise-linear approximation (APLA) of
the objective, and a relaxation of the feasible set. It requires solving three different
optimization problems: (S), (Fqt, and (Shiftqt. The second step solves the feasibility
problem (F). These problems are introduced in the next section: § 2.4.1, § 2.4.2, and
§ 2.4.3, respectively. The last step is a Riemannian subgradient descent scheme (RSG),
and depends on a quadratic subproblem, (Sub), defined in § 3.1.

Start

Solve a MILP approximation of the objective on a relaxed set Lower bound to global optimum(S), (Fqt, (Shiftqt

Project the infeasible solution on the feasible set fpp0q: First upper bound to global optimum(F)

Improvement of p0 through a local search(Sub)

Stop

p0: an infeasible solution with low objective

p0: a feasible solution

Figure 2: Block diagram of the method APLA-RSG for solving (P).

2.4. Auxiliary Optimization Problems
2.4.1. Surrogate Problem

One way of coping with the non-linearities of the objective is to approximate it as a
piecewise-linear function and then solve this surrogate problem, which can be formulated
as a mixed integer programming (MIP) problem [36].
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The surrogate problem, (S), aims at i) finding a good initial point for a local search
and ii) providing a lower bound to the solution of (P). This is achieved through an
under-approximation of the objective (as in [36]) and a relaxation of the quadratic con-
straint Eq. (5). This relaxation is explained in § 2.4.3.

The piecewise-linearization of a given function, f , is entirely defined by the set of
knots, which refer to the points where the pieces of the cost function meet. Let Xgt :“
´

Xgt1, . . . , Xgtnknot
gt

¯

be the set of knots of unit g at time t. We can then approximate
the cost function as follows:

hgtppgtq :“ Πrfg,Xgtsppgtq . (9)

In this expression, Πrf,Xs stands for the piecewise-linear interpolation of a function f
given the knots X. These approximations of the fuel costs are then aggregated as in
equation Eq. (2), in order to form the total surrogate objective h,

hppq “
ÿ

tPT

ÿ

gPG

hgtppgtq . (10)

This surrogate objective is illustrated in Fig. 1.
Note that, even if the fuel cost fg does not depend on the time step t, the approxi-

mation hgt is dependent on t, because the set of knots which define the approximation
also depends on this time index.

Equipped with this surrogate objective, we define the surrogate problem as

min
p

hppq “
ÿ

tPT

ÿ

gPG

hgtppgtq ,

s.t. p3q ´ p4q, p5qR, p6q ´ p8q ,
(S)

where p5qR stands for the relaxation of constraint p5q, and is defined in § 2.4.3. Two
relaxations are considered, a linear relaxation and a (convex) quadratic one, depending
on whether B is positive definite or not. The case of a semidefinite B is not considered:
this matrix is assumed to be invertible, as detailed in § 2.5.

2.4.2. Feasibility Problems
The feasibility problem, (F), focuses on converting an infeasible solution, p0, into a

feasible one. More specifically, this problem will be used to project the solution of (S)
onto the feasible set.

We define the feasibility objective f feas as

f feaspp ;p0, λN, λQq “ λN
ˇ

ˇ

ˇ

ˇp ´ p0ˇ
ˇ

ˇ

ˇ

2
2 ` λQ

ÿ

tPT

ÿ

gPG

fQ
g ppgtq , (11)

for given parameters λN, λQ P Rě0 and fQ
g defined as in (1). We discuss these parameters

hereafter.
The feasibility problem reads,

min
p

p11q

s.t. p3q ´ p8q .
(F)
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This problem depends on the parameters λN and λQ. When λQ “ 0, (F) becomes
a projection on the feasible set. If no initial guess p0 is available, λN is set to zero and
the problem is a quadratically constrained quadratic program (QCQP). Finally, if both
parameters are set to zero, (F) becomes a usual feasibility problem without any objective.
Note that (F) is easier than the main problem (P): on one hand because the objective is
convex and on the other hand because the primary goal is to obtain a feasible solution,
hence (F) will not be solved to optimality, saving therefore computational resources.

The fixed-time feasibility problem is also considered. It is similar to (F), except that
the problem is decoupled with respect to a given time step t. It reads as follows:

min
pt

λQ
ÿ

gPG

fQ
g ppgtq

s.t. p3qt, p5qt ´ p8qt ,
(Fqt

where p¨qt indicates that the constraint must only hold for the given time step t. Note
that constraint (4) is dropped, as it depends on two consecutive time steps.

2.4.3. Relaxation Problem
The goal of the relaxation problem is to compute a convex relaxation of the con-

straint (5), written p5qR. Two different cases are considered: either the coefficient matrix
B is positive definite, or there are at least two eigenvalues of opposite sign, in which case
the matrix is indefinite. Note that this relaxation problem is decoupled with respect to
the time index t. Indeed, if p5qt,R is the relaxation of p5qt, then taking the Cartesian
product of every time step yields a relaxation of equation (5). Hence, the discussion is
made here for a given t P T , and the full relaxation is obtained as the Cartesian product
over t:

ą

tPT

p5qt,R p5qR

Case I: B is positive definite. In this case, the feasible set generated by constraint (5qt is
the surface of an ellipsoid, see § 2.5. However, the power ranges of (3qt restrict the feasible
set to a box which is, in practice, very small with respect to the ellipsoid, because the
losses are small. This explains why a linear approximation is often used, as in [29, 28].
In order to obtain a relaxation, the set induced by (5qt,R should include the set induced
by (5qt. This condition is fulfilled if (5qt,R is the intersection between the interior of the
ellipsoid, the interior of the power ranges, and the half space induced by any secant plane
that has no intersection with the feasible set of equation (P)—in Figure 3, π0 and π1 are
valid planes while π2 is not. Ideally, the secant plane should be chosen so as to minimize
the relaxed set. However, computing the optimal secant plane can be complicated. For
example, in the specific case where there are exactly n :“ |G| intersections between the
ellipsoid and the box, the optimal secant plane (π0 in Figure 3) is the one defined by
the n intersections. Unfortunately, getting the n intersections in order to find such an
ideal plane (π0) is challenging. The simple enumeration of the vertices of the hyper-cube
becomes intractable for a small number of generators |G|.

Note that the relaxation may be exact—meaning that the optimal solution of the
relaxed problem is feasible for the unrelaxed one—or inexact, depending on the position
of the box. This type of behaviour has been studied in [21] for non-convex network
constraints.
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p1t

p2t

p3qt

π0

p5qt

π1

π2

Figure 3: Illustration of the relaxation induced by the interior of the ellipsoid, the power ranges, and
several secant planes, for a very simple case with only two generators at a given time step. The area
induced by π0 (gray fill) and π1 (blue dots) are valid relaxations while the one induced by π2 (red
hashed lines) is not a valid relaxation as some feasible points are cut off. The relaxation induced by π0
is optimal, and corresponds to the convex hull of the feasible set (blue line).

The procedure to obtain a relaxed plane at a given time step t is the following: first a
feasible point for time step t, p̃0

t , is computed by solving (Fqt, then the slope of the plane
is obtained as the tangent plane of the ellipsoid in p̃0

t , and finally, the plane is shifted
toward the interior of the ellipsoid. The value of the shift is given with the following
optimization problem

S˚t :“ max
p̄tPXt

n̂t ¨ pp̄t ´ p̃
0
t q, (Shiftqt

where Xt is the feasible set of (Fqt. This procedure is illustrated in Figure 4a which is
a magnification of Figure 3 around the available power ranges. The explicit procedure is
presented in Algorithm 1.

For a given time t, the relaxed balance constraint, p5qt,R, reads
ÿ

gPG

pgt ě PD
t ` pt

ᵀBpt `B0pt `B00,

0 ě pt ¨ nt ´ pp̃t0 ` n̂tS˚t q ¨ nt. p5qt,R

Algorithm 1 Procedure to obtain relaxation at given time step t

Require: B positive definite
p̃0

t Ð solution of (Fqt
nt Ð Bp̃0

t ` bt

n̂t Ð
nt

||nt||2
S˚t Ð max

p̄tPXt

n̂t ¨ pp̄t ´ p̃
0
t q

(5qt,RÐ
´

0 ě pt ¨ nt ´ pp̃
t
0 ` n̂tS

˚
t q ¨ nt

¯

Ť

´

ř

gPG pgt ě PD
t ` ploss

t

¯

return (5qt,R
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p̃0
t

pt

n̂t

p
t ´

p̃ 0
t

(a) Ellipsoid case: 1-plane relaxation.

´n̂t

xt

yt

n̂t

p̃0
t

(b) Hyperboloid case: 2-plane relaxation.

Figure 4: Procedure to obtain the relaxation.

Figure 5: Illustration of the relative size of the power ranges with respect to the quadric (ellipsoid) for a
3-unit problem at a given time step t. The admissible power range, (3qt, is the interior of the red cube
and the power balance, (5qt, the surface of the blue ellipsoid. The right figure is a magnification around
the admissible power ranges. The red dots, in the right figure, are the vertices of the box.

This convex relaxation is motivated by the fact that the size of the quadric is much
larger than the admissible ranges of the unit, and the linear relaxation is almost on the
quadratic surface. This phenomenon is illustrated in Figure 5 for a 3-unit problem at a
given time step t.

Case II: B is indefinite. In this case, there are at least two eigenvalues of B of opposite
sign, and therefore the set defined by the power balance (5qt is no longer the boundary of
a convex set. Figure 6 illustrates an example of this case. Figures 6b and 6c show that a
single plane will not be enough to construct the relaxation: Figure 6b prompts the use of
an interior relaxation plane, in a similar way as case I, however Figure 6c demonstrates
that en exterior plane should also be used. To tackle this issue, we solve (Shiftqt for
both directions n̂t and ´n̂t. The whole procedure is explicitly given in Algorithm 2 and
depicted in Figure 4b. Remark that in this case, the relaxation is linear.

2.4.4. Comparison of the Optimization Problems
The characterization of each optimization problem is presented in Table 1. The last

two problems are decoupled with respect to the time step which reduces significantly the
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(a) Full hyperboloid.

(b) OXZ view.

(c) OXY view.

Figure 6: Illustration of the relative size of the power ranges with respect to the quadric for a 3-unit
problem at a given time step t. In this example Kron’s matrix is not positive definite: two eigenvalues
are positive and the last one is negative. The quadric is a onesheet hyperboloid. The admissible power
range, (3qt, is the interior of the red cube, too small to be distinguishable, and the power balance, (5qt,
the surface of the blue hyperboloid. Figures 6b and 6c show different views. The green point is the
center of the quadric.

Algorithm 2 Procedure to obtain relaxation at given time step t for a non-convex
quadric.
p̃0

t Ð solution of (Fqt
nt Ð Bp̃0

t ` bt

n̂t Ð
nt

||nt||2
S˚,int

t Ð max
x̄tPXt

n̂t ¨ px̄t ´ p̃
0
t q

S˚,ext
t Ð max

ȳtPXt

´ n̂t ¨ pȳt ´ p̃
0
t q

(5qt,RÐ
´

0 ě pt ¨ nt ´ pp̃
0
t ` n̂tS

˚,int
t q ¨ nt

¯

Ť

´

0 ď pt ¨ nt ´ pp̃
0
t ` n̂tS

˚,ext
t q ¨ nt

¯

return (5qt,R
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size of the problem. They are considered as easy, relatively to the first three problems
and, in the test cases studied in the present work, they can be solved to optimality in
less than a second. Among the three larger problems, (P) is unquestionably the most
difficult. Problem (F) is arguably easier than (S): the reason is that any feasible solution
of (F) is acceptable, since the goal is to find a feasible solution. On the other hand, (S)
is a true optimization problem in the sense that we are interested in the lowest possible
objective and especially a high lower bound.

Table 1: Comparison of the optimization problems.

(P) (S) (F) (Fqt (Shiftqt
Classification NLP MIQP QCQP QCQP QCLP
Convexity Non-convex Non-convex Non-convex Non-convex Non-convex
Objective Non-convex, non-smooth Piecewise-linear Quadratic Quadratic Linear
Feasible set Non-convex Convex1 Non-convex Non-convex Non-convex
Problem size |T ||G| |T ||G| |T ||G| |G| |G|

2.5. Topology of the feasible set
Let us now study the feasible set defined by Eq. (5). In particular, we define the

quadratic surface, or quadric, and express Eq. (5) as a Cartesian product of quadrics.
Finally, we characterize this quadric as a quadric with middle point. This middle point
will be used in § 3.1 to compute the retraction mapping.

Characterization of the hypersurfaces [3]. Let V be a vector space on the field K “ R or
K “ C. A relation

V Ñ K : x ÞÑ Ψpxq “ ρpxq ` 2φpxq ` a
with a quadratic form ρ, a linear form φ and a constant a P R is called a quadratic
function.

Let Ψ : Rn Ñ R be a nonzero quadratic function, then its zero set

QpΨq “ tx |Ψpxq “ 0u

is a quadric of Rn.
For a given time step t, Eq. (5) can be written as a quadric by choosing the relation

Rn Ñ R : pt ÞÑ Ψtpptq “ pt
ᵀBpt ` 2bᵀpt ` ct (12)

with n “ |G|, b “ B0´1
2 and ct “ B00 ` PD

t . Since this constraint holds for every time
step, this yields the following set:

Qtot :“ QpΨ1q ˆQpΨ2q ˆ . . .ˆQpΨ|T |q (13)

Let r be the rank of B. If we assume that B is invertible, as it is the case in all the
instances we found in the literature, then r “ n. Following the classification of [3], the

1The initial feasible set is convex, nevertheless the modelization of the piecewise-linear objective is
made through integer variables which makes the feasible set inherently non-convex, see [14] for more
details about the modelization of non-convex functions as piecewise-linear functions.
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quadric hypersurface is said to be of type 2 (Mittelpunktsquadrik or quadric with middle
point). Indeed, let us compute the rank of

B̄t “

ˆ

B b
bᵀ ct

˙

. (14)

Since B is invertible, the Guttman rank additivity formula yields [45]

rank B̄t “ rankB ` rankpct ´ bᵀB´1bq . (15)

In general, ct ‰ bᵀB´1b. Thus, it follows that rank B̄t ą r “ rankB and henceforth
QpΨtq is a type-2 quadric. When all the eigenvalues of the quadratic form are positive,
the non-degenerate type-2 quadric is an ellipsoid, illustrated in Fig. 5, otherwise it is an
elliptic hyperboloid, illustrated in Fig. 6.2 A feature of the type-2 quadric is the existence
of a center, d, computed as

d “ ´B´1b. (16)

This center will be used in § 3.1 to compute the relaxation on the manifold defined by
the quadric.

3. Methods

In this section, we explain how to combine all the elements developed in Section 2
to solve (P). First, we describe how to derive a lower bound of the problem. We then
show how to obtain an upper bound, i.e., a feasible solution, and improve it using a
Riemannian gradient descent. Finally, both steps are combined in a single algorithm.

3.1. Deriving a Lower Bound
In a similar fashion as [36, 35], the lower bound is obtained through an underapprox-

imation of the objective via piecewise-linearization. However, this is not sufficient here
as the feasible set is the subset of a quadric. Hence, this non-convex set is relaxed using
the solution of (Shiftqt which requires for each time step t a point p̃0

t feasible for (Fqt.
The goal here is to obtain a lower bound but also a candidate which is globally

efficient, meaning that its objective is close to the global optimum. In general, this
candidate will not be feasible due to the relaxation of the feasible set, but we expect it
to be sufficiently close to the feasible set such that when we project it back to this set,
it remains close to the global optimum.

Feasible set relaxation. A t´feasible point, p̃0
t , is readily obtained for each t with Algo-

rithm 3. Notice that the point is not globally feasible and hence fpp̃0q is not an upper
bound to the global solution. This point is simply a starting point for Algorithms 1 and 2
depending on whether B is positive definite or not.

2In this paper we consider that the problem is feasible. Hence, we do not study the case where all
eigenvalues of B are negative.
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Algorithm 3 Find p̃0 feasible for each time step t

for t P T do
p̃0

t Ð arg min (Fqt
end for
return p̃0

Solution of the surrogate problem. The lower bound can be obtained via the adaptive
piecewise-linearization algorithm (APLA) described in [36]. However, this method suffers
from long execution time. In practice, we are not interested in spending too much time to
obtain the lower bound, therefore in the numerical experiments of section 4 we rather use
the heuristic based on APLA that is described in [35]. In order to simplify the discussion,
the description that we provide in the present paper is based on the APLA method.

The APLA method can be summarized as follows. Firstly, a set of knots which define
the piecewise-linear approximation is defined. Then, the (first) surrogate problem pSq1

defined with the (first) set of knots X1 is solved using a MIP solver. If we neglect the
fact that the feasible set is relaxed, the solution returned by the solver is non-optimal
because i) optimality is guaranteed up to a given tolerance and ii) the surrogate objective
approximates the real objective. To remedy the latter point, the approximation is refined
around the returned solution; this adaptive refinement results in a lower number of integer
variables than a global refinement that consists in doubling the number of linear pieces.
It is proven in [36] that this method converges up to the solver tolerance, i.e., the second
cause of sub-optimality vanishes as the number of APLA iterations tends to infinity. The
method is outlined in the dotted frame of Fig. 7. The surrogate objective and the knots
are depicted in Fig. 1.

Note that this method cannot be directly applied to our problem, because of the
non-convex constraint Eq. (5). This explains the need of the relaxation developed in
§ 2.4.3.

3.2. Deriving an Upper Bound: Riemannian Subgradient Scheme
A simple and direct method for obtaining a feasible point, i.e., a first upper bound

to the global solution, is to project the candidate obtained at the end of the procedure
depicted in Fig. 7 on the feasible set of (P). However, the projection is, in general, not
a global optimum nor even a local optimum, and it is worthwhile to attempt to improve
the obtained feasible solution through a local search. In [29], the authors use an interior-
point method as a local solver. Nevertheless, this method mildly improves the solution
and it relies on barrier parameters that are difficult to choose a priori. In this section, we
propose to adapt the Riemannian gradient descent described in [5] in order to account
for reserves and multiple time steps.

The Riemannian subgradient descent can be described as a classical line-search scheme,

pk`1 “ pk ` αkvk (17)

where αk is the step size and vk the (descent) direction at iteration k. Usually, the
question remains on how to choose the step size and the descent direction in order to
fully determine the scheme. Here, it is also required to redefine the “`“ operation in
order to fully define the method; since the feasible set is not a vector space, it is not true
in general that Eq. (17) yields a feasible point, even for small αk. A simple idea would

14



APLA

Start

Get p̃0 with Algorithm 3

Is B positive
definite?

@t P T, Relax p5qt
with Algorithm 1

Initiate set of knots X

Solve (S) given knots X

Is tolerance reached ?

Stop

@t P T, Relax p5qt
with Algorithm 2

Refine: add solution
of (S) to knots X

Yes

Yes

No

No

Figure 7: Flowchart of the method for obtaining a lower bound along with a first (infeasible) candidate
with low objective.

be to project the resulting point on the feasible set. This defines a projected line-search
scheme. This is not a good idea for our problem for two reasons. Firstly, the projection
onto the feasible set of (P) is a costly operation (see classification of (F) in Table 1), and a
usual line-search scheme requires at least a few dozen iterations. Secondly, the geometry
of the feasible set exhibits a rich structure of a manifold which can be exploited.

In the following paragraphs, the general Riemannian geometry is introduced, then
the retraction—the extension of the “`“ operator, illustrated in Fig. 8—and the descent
direction are described. Finally, the step size rule and some implementation details are
given.

3.2.1. Riemannian geometry
In a similar way as [5], we define the quadric manifold. Then, we use it to define the

extended quadric manifold.

Proposition 3.1 (Quadric manifold). Let Ψ : Rn Ñ R : pt ÞÑ Ψpptq “ pt
ᵀBpt `

2bᵀpt ` ct, be a quadratic function. If B is nonsingular and ct ‰ bᵀB´1b, then the
quadric QpΨq is an n´ 1 dimensional smooth manifold of Rn.

Proof. As Ψ P C8, the quadric QpΨq :“ Ψ´1p0q is an algebraic variety, it is a manifold if
DΨpptq ‰ 0 @pt P QpΨq, that is if the critical points of Ψ do not belong to the quadric.
Since B is nonsingular, the only critical point is the center d:

d “ ´B´1b ,

and this point cancels Ψ only if ct “ bᵀB´1b.
15
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Figure 8: Illustration of the retraction, Rtppt, ξtq.

Remark that the assumptions of Proposition 3.1 are equivalent to the needed assump-
tions for the quadric to be of type 2 in § 2.5.

Definition 3.1 (Extended quadric manifold). The Cartesian product of the quadrics de-
fined for each time step t as in Eq. (12) is called extended quadric manifold and computed
as

Qtot :“ QpΨ1q ˆQpΨ2q ˆ . . .ˆQpΨ|T |q.

The extended quadric manifold is effectively a manifold because the Cartesian product
of smooth manifolds is also a manifold. In this case, the dimension of the manifold is
|T | p|G| ´ 1q.

A first important object to be described when dealing with manifolds is the tangent
space. Intuitively, it refers to the first-order approximation of the manifold at a given
point p. This mathematical object is used in numerous algorithms on manifolds in the
following way. The tangent plane is defined at a given point p belonging to the manifold.
Then, any other point p1 of the manifold, sufficiently close to p, is mapped to the tangent
space through the logarithmic map. In this tangent space, the usual vector operations can
be used, and the resulting vector can be mapped back to the manifold via the exponential
map.

The tangent space of the quadric manifold QpΨtq at a given point pt is defined in
general as

Definition 3.2. Let QpΨtq be a smooth real manifold, the tangent space reads

TptQpΨtq “

!

ξ P R|G| | Dc : R ÞÑ QpΨtq with cp0q “ 0, c1p0q “ ξ
)

.

Using the specific structure of the quadric manifolds, this tangent space is computed
as [5]

Tpt
QpΨtq “

!

ξ P R|G| | ξᵀp2Bpt ` btq “ 0
)

, (18)

and dim pTptQpΨtqq “ |G| ´ 1. This tangent plane is illustrated in Fig. 8 for a positive
definite matrix B.
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Definition 3.3 (Tangent bundle). The tangent bundle TQpΨtq of a manifold QpΨtq is
defined as the disjoint union of every tangent space at every point of the manifold,

TQpΨtq “
ğ

ptPQpΨtq

TptQpΨtq .

Since every tangent space is a linear subspace of R|G|, each can be endowed with an
inner product x¨, ¨ypt

defined as the restriction of the canonical Euclidean product on the
tangent space Tpt

QpΨtq,

x¨, ¨ypt
: Tpt

QpΨtq ˆ Tpt
QpΨtq Ñ R : pξ, ζq ÞÑ xξ, ζypt

“ ξᵀζ. (19)

Similarly, we define an inner product x¨, ¨yp as the restriction of the canonical inner
product on the tangent space TpQtot,

x¨, ¨yp : TpQtot ˆ TpQtot Ñ R : pξ, ζq ÞÑ xξ, ζyp “ ξ
ᵀζ “

ÿ

tPT

xξt, ζtypt . (20)

This inner product induces the canonical norm: ||ξ||p “ xξ, ξy
1{2
p . A smooth manifold

equipped with an inner product on the tangent space at every point is called a Rieman-
nian manifold.

The normal space can be computed as the orthogonal complement of the tangent
space.
Definition 3.4. Let QpΨtq be a |G|´1 smooth manifold embedded in R|G| and Tpt

QpΨtq

its tangent space, the normal space is defined as

Npt
QpΨtq “ Tpt

QpΨtq
K (21)

where ‚K is defined with respect to the canonical inner product on R|G|.
It follows from Eq. (18) that

Npt
QpΨtq “ tτp2Bpt ` btq | τ P Ru , (22)

and dim pNpt
QpΨtqq “ 1.

Now that an expression for the tangent and normal space of each individual manifold
has been obtained, both can be computed for the extended quadric manifold.
Proposition 3.2. TpQtot “ Tp1QpΨ1q ˆ Tp2QpΨ2q ˆ . . .ˆ Tp|T |QpΨ|T |q
Proof. See [12, Chap. 1.2].

Proposition 3.3. NpQtot “ Np1QpΨ1q ˆNp2QpΨ2q ˆ . . .Np|T |QpΨ|T |q

Proof. We first show that NpQtot “ pTpQtotqK Ě Np1QpΨ1q ˆ Np2QpΨ2q ˆ . . . ˆ
Np|T |QpΨ|T |q and then we conclude with an argument on the dimensions.

i) Let p P TpQtot and p1 P Np1QpΨ1qˆNp2QpΨ2qˆ . . .ˆNp|T |QpΨ|T |q, both are par-

titioned as follows: p “

¨

˚

˚

˚

˝

p1
p2
...
p|T |

˛

‹

‹

‹

‚

and p1 “

¨

˚

˚

˚

˝

p11
p12
...
p1
|T |

˛

‹

‹

‹

‚

. It follows from Proposition 3.2

and Definition 3.4 that pᵀp1 “ 0 and therefore that p1 P pTpQtotqK.
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ii) Since TpQtot is a linear subspace of R|G||T |, we have |G| |T | ´ dim pTpQtotq “

dim
´

pTpQtotq
K
¯

“ |G| |T | ´ |T | p|G| ´ 1q “ |T |. This concludes the proof as

dim
`

Np1QpΨ1q ˆNp2QpΨ2q ˆ . . .ˆNp|T |QpΨ|T |q
˘

“ |T | .

Since we have shown that both tangent and normal spaces of the extended quadric are
the Cartesian products of the tangent and normal space of the individual manifold QpΨtq,
we can easily extend the projection operator from [5] by working componentwisely.

The projection Pp pvq of a vector v P R|G||T | partitioned as pv1
ᵀ,v2

ᵀ, . . . ,v|T |
ᵀq

ᵀ onto
TpQtot can be constructed by removing the normal component of v:

Pp pvq “ pv̂
ᵀ
1 , . . . , v̂

ᵀ
|T |q

ᵀ
, (23)

where v̂t “ vt´τtp2Bpt`btq and τt is chosen to ensure that Pptpvtq belong to TptQpΨtq,
i.e.,

τt “
vt

ᵀp2Bpt ` btq
||p2Bpt ` btq||2

. (24)

3.2.2. Retraction
Definition 3.5 (Retraction). A retraction R is a smooth mapping from the tangent
bundle of a manifold to the manifold itself,

Rt : TQpΨtq Ñ QpΨtq : ppt, ξtq ÞÑ qt :“ Rtppt, ξtq ,

with dRtppt, αξtq
dα

ˇ

ˇ

ˇ

ˇ

α“0
“ ξt and Rtppt,0q “ pt. (25)

It is clear that the retraction is not unique, and in fact, the retraction can be seen as
an approximation of the exponential map. Indeed, in this specific case the exponential
map cannot be easily computed, see the discussion in [5], but some retractions can be
easily computed.

The retraction considered in this work and introduced in [5] is illustrated in Fig. 8:
the retraction Rtppt, ξtq is obtained by looking at the intersection qt between the quadric
and the line between pt ` ξt and the quadric center d, as defined in Eq. (16). Note that
this intersection is not supposed to be unique (see q1t); to remedy this, the closest point
to pt ` ξt is chosen. A closed-form solution of this procedure is given in [5, §3.3].

In general, the direction vt may not lie in the tangent space of pt. An extra step of
projection is then needed in Eq. (17), ξt “ Pp pvtq.

This retraction can be readily extended to the multistep case: it suffices to work with
each component independently:

R : TQtotÑQtot : pp, ξq ÞÑ q :“

¨

˚

˚

˚

˝

q1
q2
...
q|T |

˛

‹

‹

‹

‚

, (26)
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with qt “ Rtppt, ξtq. Notice that, if the retraction is illustrated with an ellipse in Fig. 8,
it is not limited to this specific quadric. Any type-2 quadric or quadric with a middle
point (see § 2.5), can be considered. Also, an interesting feature of this procedure is
the fact that it does not require a lot of computational power: the tangent space has
a closed-form Eq. (18), as well as the projection onto this tangent space Eq. (23), and
finally the retraction itself can also be efficiently computed—it amounts to solving |T |
one-dimensional quadratic equations and choosing for each equation the root the closest
to one [5].

Going back to Eq. (17), if the direction vk does not belong to the tangent space of
the current iterate pk, it reads

pk`1 “ Rppk, Ppk

`

αkvk
˘

q. (27)

3.2.3. Descent direction on a manifold
Before the discussion on the descent direction, we define the concept of Q´admissible

direction which accommodates the set defined by Eq. (5).

Definition 3.6. A Q´admissible direction defined at point p P Qtot is a vector v P
TpQtot for which there exists ε ą 0 such that Rpp, αvq belongs to Qtot for all α P r0, εs.

The gradient is inherent in the concept of steepest descent, but the function Eq. (1)
is only smooth almost-everywhere, and the zero-measure set where it is non-smooth is
located at positions where the argument of the absolute value in Eq. (1) changes sign.
This set simply corresponds to a multidimentional grid which can be computed as

S :“
"

p P R|G||T | | Dg P G, t P T, j P Jg with pgt “ P´g `
pj ´ 1qπ

2Eg

*

, (28)

where
Jg :“

"

j “ 1, 2, . . . , 1`
R

pP`g ´ P
´
g q

2Eg
π

V*

. (29)

For a non-smooth function, the gradient is often replaced by the subgradient, however
this mathematical object cannot be used for the non-convex functions (1). Here, we
consider the closely connected concept of generalized gradient introduced in [6]. First,
let us define the generalized directional derivative f 0pp;vq of the Lipschitz function f :
X Ñ R, for a Banach space X, in the direction v as

f 0pp;vq “ lim sup
hÑ0
λÓ0

fpp ` h` λvq ´ fpp ` hq

λ
.

This function is convex in v, independently on the convexity of f . The generalized
gradient of f at p, written Bfppq, is defined as the subdifferential of the convex function
f 0pp, ¨q at 0. In particular we have,

Bfppq “
 

ζ P X˚ | f 0pp;vq ě xv, ζy @v P X
(

, (30)

with X˚ the dual space of X. The generalized gradient shares some important properties
with the subdifferential of a convex function, namely the fact that it is a nonempty convex
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and compact set and that if a point p is a local minimizer of f , then 0 P Bfppq. Fur-
thermore, if f is convex, then the generalized gradient coincides with the subdifferential,
and for a point p differentiable, we have Bfppq “ t∇fppqu.

Function (2) is a Lipschitz function that can be computed as the pointwise maximum
of m :“ 2|G||T | smooth functions3, i.e.,

fppq “ max
j“1,...,m

fjppq. (31)

In this specific case, [5] shows that the generalized gradient can be described as

Bfppq “ co t∇fjppq | j P If ppqu , (32)

where co t¨u denotes the convex hull and If the set of indices for which the maximum
in Eq. (31) is attained.

This framework is valid for the unconstrained problem (P). Let us now integrate the
manifold constraint Eq. (5), and then the other linear constraints.

Given a smooth function fj from the pointwise maximum in Eq. (31), the projected
gradient is defined as follows

grad fjppq “ Pp p∇fjppqq , (33)

and the projected generalized gradient is given by

grad fppq “ co tgrad fjppq | j P If ppqu . (34)

The steepest Q´admissible direction vk from iterate pk is obtained by computing
the shortest vector in grad fppkq, see [5] for more details. This can be computed by min-
imizing the norm of the convex combination of the projected gradients. If the coefficients
of the convex combination are given by

λk “ arg min
λě0

ř

λj“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ÿ

jPIf ppkq

λjgrad fjppkq

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

“ arg min
λě0

ř

λj“1

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

Ppk

¨

˝

ÿ

jPIf ppkq

λj∇fjppkq

˛

‚

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2

(35)

then the steepest-descent Q´admissible direction is computed as

vk “ ´Ppk

¨

˝

ÿ

jPIf ppkq

λkj∇fjppkq

˛

‚. (36)

This optimization problem is defined on a high dimensional (2|G||T | ) simplex and
should be solved at each iteration. To remedy the high expected solving time, [5] also
introduces a reformulation which exploits the specific form of the function (2) and con-
siderably reduces the dimension of the problem. We show here how to apply this refor-
mulation to the extended quadric manifold.

3Since |x| “ max tx,´xu and there are |G| |T | absolute values in Eq. (2).
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Let Sppkq be the set of indices of pk where the sine components of the objective
function evaluate to zero, and Fppkq the remaining indices, i.e.,

Sppkq “

$

’

’

&

’

’

%

pgs
1, t

s
1q

loomoon

:“s1

, pgs
2, t

s
2q

loomoon

:“s2

, . . . , pgs
nk

s
, tsnk

s
q

loooomoooon

:“s
nk

s

,

/

/

.

/

/

-

“
ď

tPT

Stppkt q “
ď

tPT

 

pg, tq | g P G, fVPE
g ppgtq “ 0

(

(37)

Fppkq “

$

’

’

’

&

’

’

’

%
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loomoon
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f
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loomoon
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f
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f
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/
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/

/

/

-

“
ď

tPT

Ftppkt q “
ď

tPT

 

pg, tq | g P G, pg, tq R Sppkt q
(

(38)

and we have naturally T ˆ G “ Sppkq
Ť

Fppkq for all pk P Qtot,
ˇ

ˇSppkq
ˇ

ˇ “ nks and
ˇ

ˇFppkq
ˇ

ˇ “ nkf “ |T | |G| ´ nks . Note that, in order to lighten the notation, we sometimes
omit the superscript k that denotes the dependency on k. Using these sets, the projected
generalized gradient can be efficiently split between a smooth and a non-smooth part.
Let gk be the smooth part and Sk the matrix containing the non-smooth parts to be
combined,

Sk “
”

Ppk

´

∇f̂S
sk
1
ppk

¯

, . . . , Ppk

´

∇f̂S
nk

s
ppkq

¯ı

P R|T ||G|ˆn
k
s (39)

gk “ Ppk

¨

˝∇fQppkq `
ÿ

pg,tqPFppkq

∇
ˇ

ˇ

ˇ
f̂Sppk

ˇ

ˇ

ˇ
q

˛

‚P R|T ||G| (40)

where fS is the sine part of Eq. (1), and f̂sppq :“ fsppsq. Note that, as the fuel cost is
independent of time, we define with a slight abuse of notation fgt :“ fg.

The subproblem Eq. (35) can be rewritten as

λk “ arg min
´1ďλď1

ˇ

ˇ

ˇ

ˇgk ` Skλ
ˇ

ˇ

ˇ

ˇ

2
2 , (41)

and the Q´admissible descent direction vk is computed as vk “ ´pgk ` Skλkq. The
subproblem Eq. (41) is a convex quadratic programming (QP) problem of dimension
nks ď |T | |G|, which is much easier to solve than any problem in Table 1.

Notice that, until now, the unique constraint that we consider is Eq. (5). The gen-
eralization of the descent direction on a constrained manifold, such as the feasible set
of (P) is presented hereafter.

3.2.4. Descent direction on constrained manifold
If, as in (P), the feasible set is a manifold further constrained by q linear constraints

under the form ci
ᵀp ď 0 with i “ 1 . . . q, we define the matrix Ck of the projected active

constraints at point pk, whose columns are given by

Ck
˚,j “ Ppk pcjq for all j P t1 . . . qu such that cjᵀpk “ 0. (42)
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We have Ck P R|T ||G|ˆnk
c with 0 ď nkc ď q.

The subproblem Eq. (41) becomes

pλk,µkq “ arg min
´1ďλď1
µě0

ˇ

ˇ

ˇ

ˇgk ` Skλ`Ckµ
ˇ

ˇ

ˇ

ˇ

2
2 , (Sub)

and the descent direction vk “ ´pgk ` Skλk `Ckµkq.
Note that the dimension of (Sub), the number of decision variables, is between 0

and |T | |G| ` q ! 2|G||T |. Furthermore, for a smooth point located in the interior of
the domain, (Sub) is trivial and the direction is given by the gradient: vk “ ´gk “
´Ppk

`

∇fppkq
˘

.
In order to complete the description of the line-search scheme, it remains to choose a

step-size rule and a stopping criterion.

3.2.5. Stopping criterion, step rule and implementation details
It can be shown that the direction vk at a stationary point pk yields the zero vector [6].

Thus, a natural stopping criterion is to monitor the direction norm. Unfortunately, as
studied in [10], this type of criterion on the norm of the KKT violation—which is here
equivalent to the norm of the descent direction—is not reliable as this norm varies non-
smoothly around stationary points. Hence, the second criterion used here is the step-size
αk. If the step-size becomes too small for the point to be admissible, i.e., feasible for
(P), the algorithm stops.

A common practice for the step-size is to use Armijo’s rule. This rule ensures that
the step-size αk at iteration k renders the next iterate pk`1 “ Rppk, αkvkq feasible,
while sufficiently decreasing the objective. An explicit implementation of Armijo’s rule
is described in [5, Algorithm 3]. We slightly modify it such that it returns 0 if vk “ 0
(up to a given tolerance) and ´1 if no step size above a given treshold is found.

It appears that, for problems which are sufficiently large, the subproblem (Sub) be-
comes problematic, in the sense that the direction obtained is only admissible, i.e.,
feasible for (P), in a tiny neighbourhood around the previous iterate. This can arise
when a given component of an iterate pkgt is binding at multiple operational constraints,
e.g., pkgt “ P´g (Eq. (3) is tight) and pkgt ´ pkgpt´1q “ R`g (Eq. (4) is tight). To remedy
this situation, the variable is frozen at its value and is no longer a decision variable—
giving the right feedback loop in Fig. 9. This allows us to provide a temporary degree
of freedom to the algorithm, which may find an other direction for which an admissible
step-size is available. This procedure, as well as the complete method for obtaining a
feasible solution and improving it, is described in Fig. 9.

Finally, it should be noted that in general, it is very unlikely that a given iterate
would be exactly located at a non-smooth point. This implies that Sk from Eq. (39) is
likely to be empty. Hence, and in a similar fashion as [5], we consider that the equalities
from Eqs. (39) and (42) should be satisfied within a small ε accuracy.

4. Test cases

In a similar fashion as [29], the method is tested on several data sets with a different
number of units and a time horizon of 24 hours. For each data set, the best objective (or
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Start

Get candidate p0 from process in Fig. 7 and choose λN, λQ P Rě0

p0 Ð arg min(F) given p0, λN, λQ
k Ð 0

Compute gk,Sk,Ck given pk

pλk,µkq Ð arg min(Sub)
dk Ð ´pgk ` Skλk `Ckµkq

Compute Armijo step αk for the direction dk

What is the value of αk ?

Freeze tight constraints

Is pk frozen ?pk`1 Ð Rppk, αkdkq
k Ð k ` 1

Stop

p0 does not respects (5) but has a low objective

p0 is feasible and fpp0q is a first upper bound.

ą 0 ´1

0

No

yes

Figure 9: Flowchart of the method that projects the candidate from Fig. 7 and improves it through a
Riemannian subgradient descent.
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upper bound) is reported, along with the best lower bound. The optimality gap, defined
as the difference between the best known upper and lower bound, is also reported.

In order to account for the different processor speeds from other methods in the
literature, the scaled CPU time is used [44]:

Scaled CPU time “ Given CPU Speed
Base CPU speed Given CPU time , (43)

where the base CPU time used in this paper is 3.6 GHz. However, it is important to
realize that the execution time is affected by other factors than the CPU clock rate,
notably the number of cores. The purpose of the S-time is thus chiefly to check if the run
time remains reasonable. The key contribution of the proposed method is to be found in
the “lower bound” column; see also Section 1 for a discussion of its purpose. The scaled
CPU time is denoted as S-time and given in minutes.

In addition to the main objective, the deviation ans the losses are computed. The
deviation corresponds to the mismatch between the point and the ellipsoid, and is com-
puted by rearanging Eq. (5): deviation “

ř

tPT

ˇ

ˇ

ˇ

ř

gPG pgt ´ P
D
t ´ p

loss
t

ˇ

ˇ

ˇ
, and the losses

correspond to the value of
ř

tPT p
loss
t .

The data, final solution, and algorithm implementations are available on GitLab [34].

4.1. 5-unit, 24 time steps test case
We use the data from [30]. The data consists of a 5-unit case, where all units obey a

valve-point effect. The reserve is set to 5% of the demand.
We compare the solution obtained with our proposed method to other methods from

the literature in Table 2. The three first columns report the minimum, average and
maximal solution. For deterministic methods, only the first column includes values. The
best solution that is available in the literature is plugged into our model, in order to
compute the losses and the demand deviation. The latter is defined as the violation
of Eq. (5). Only the proposed method provides a lower bound which allows us to bound
the final optimality gap at 1.3 %. Remark that, since the lower bound is only improved
in the first part of the proposed method, i.e., APLA, this lower bound will always be
equal to the one of the full method APLA-RSG.

The proposed method, APLA-RSG, achieves a competitive objective with respect
to other methods in the literature. It is outperformed by BBOSB and MILP-IPM.
Nevertheless, we note that i) APLA-RSG provides a lower bound, ii) the deviation of
APLA-RSG is much smaller, and iii) a fair comparison should take the run time into
account. BBOSB [42] only reports the number of function evaluation („ 2e5). Function
evaluations (FEs) allow an accurate comparison between methods run on different com-
puters, however they cannot be computed in our case due to the call to the MIP solver in
APLA. We note, nonetheless, that the RSG method requires 24750 FEs for converging.
We can therefore estimate the equivalent FEs for the entire APLA-RSG procedure as
being equal to 100 000, which is half of the BBOSB procedure.

Note that Table 2 also presents the results of Ipopt [38] with default parameter
settings. Unfortunately, Ipopt times out, and the returned objective (35592) does not
match the evaluation of the returned solution at the true objective (45514). This mis-
match results from the intermediate variables required for modeling the non-convex ob-
jective Eq. (1) using JuMP [9, 15].

24



Table 2: Summary results: 5-unit case

Cost
Method Min Avg Max S-Time Loss (MW) Deviation (MW) Lower bound

BBOSB[42] 43018 43066 43197 - 194.65 0.01 -
HIGA[24] 43125 43162 43259 1.37 194.79 0.074 -
ICA[25] 43117 43144 43210 - 194.80 0.014 -
MILP-IPM[29] 43084 - - 0.58 195.26 0.00095 -
Ipopt 45514 (35592) - - 0.6 196 0.35 -
APLA 43250 - - 0.38 193.98 1.6e-9 42527.85
APLA-RSG 43098 - - 0.5 194.02 3e-11 42527.85

Table 3: Summary results: 10-unit case

Cost
Method Min Avg Max S-Time Loss (MW) Deviation (MW) Lower bound

BBOSB[42] 10391694 - - - 818.22 83 -
TSMILP [41] 1037487 - - 1.9 832.32 0.013 -
MILP-IPM[29] 1040676 - - 0.75 882.74 0.0019 -
Ipopt 1054180 (1038060) - - 2.8 740.3 0.015 -
APLA 1040475 - - 1.6 882.02 1.9e-9 1032045
APLA-RSG 1038108 - - 2.3 809.05 1.3e-11 1032045

4.2. 10-unit, 24 time steps test case
The data originates from [30] and consists of a 10-unit case. All units obey a VPE,

and the matrix B is indefinite. Similarly as [41], the reserve is set to 3.5% of the demand
and not 5%. As a matter of fact, the problem with 5% reserve is not feasible: this can
be shown by examining the static dispatch at the highest demand. Since Eq. (6) must
hold for all t, we have

ÿ

gPG

P`g ´ pP
D
t ` min

ptPPt

ploss
t ` P S

t q ě 0, (44)

where Pt corresponds to the intersection of the power ranges Eq. (3)t with a relaxed
version of the power balance Eq. (5)t,

ÿ

gPG

pgt ě PD
t . (45)

This is a relaxation because negative losses ploss
t are physically impossible. It is

clear that, if the problem (P) is feasible, then Eq. (6)t holds for all t, which implies
that Eq. (44)t also holds for all t. Conversely, if Eq. (44)t does not hold for any t
then (P) must be infeasible. In this test case, the highest demand occurs for t “ 12 with
PD
t “ 2220 MW and P S

t “ 111 MW. The sum of the maximum power ranges is 2358
MW and the minimal power losses are computed as 49.7MW. Hence, we conclude that
the 10-unit test case with a 5% reserve requirement is not feasible. This may explain
why [29], despite developing the method to account for reserves, do not test the 10-unit
test case with reserve. This may also explain why [41] choose a 3.5% reserve instead
of the usual 5% requirement. This also raises questions about certain methods in the
literature, reported in [41, Table V], which claim to solve this infeasible problem.

Table 3 compares the different methods from the literature. The discussion is analo-
gous to the previous case (§ 4.1).

4This value differs from the reported value of [42] and has been computed from the given solution
of [42]. This may come from a mistake in the solution reported. This mistake could explain the high
balance deviation, meaning that this reported solution is not feasible.
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(a) Relative change between APLA-RSG and
Ipopt for the objective (solid blue line), and
the power losses (dashed red line) for twelve
different load profiles over 24 hours that each
have a different mean.
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Figure 10: Comparison between APLA-RSG and Ipopt for the 15-unit test case for twelve load profiles.
The profile with µPD “ 1950 is emphasized in black in both figures.

4.3. 15-unit, 24 time steps test case
The data for this test case originates from [46]. The original instance consists of 15

units in a static dispatch. All units obey a valve-point effect in the original instance. As
in [35], we model a demand over 24 time steps with ramping constraints. We compare the
solution of APLA-RSG with Ipopt. Fig. 10a depicts the relative changes in objective and
power losses between the returned solution of APLA-RSG and Ipopt, for twelve different
load profiles. The load profiles are presented in Fig. 10b. The objective of APLA-RSG
always outperforms the objective of Ipopt, and the improvement is approximately equal
to 1%. The power losses of APLA-RSG are also lower than the losses of Ipopt for eleven
of the twelve problems, and the improvement goes up to 25 %. Note that a lower (or
higher) mean demand µPD than the one considered in the present experiments results in
an infeasible problem.

Concerning the computational time, APLA-RSG running times range from 88 to 113
seconds and Ipopt from 204 to 215 seconds. The deviation is around 1ˆ 10´10 MW for
APLA-RSG and 0.003 MW for Ipopt. In other words, the solution from APLA-RSG is
obtained twice as fast while strictly meeting the constraints, decreasing the losses, and
reducing the objective of around 1%.

5. Conclusion

In this work, we develop a method for tackling a non-smooth and non-convex economic
dispatch problem. Non-convexities originate from the inclusion of the valve-point effect,
which is an important effect in the operation of large gas units, and from the consideration
of power losses, which are modelled as a non-convex quadratic equation.

We demonstrate that power balance with quadratic power losses can be expressed as
quadrics, which exhibit the rich structure of a Riemannian manifold. The hypothesis of
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the positive definitiveness of the quadratic constraint is not made, as it is not always
the case in practice, and we demonstrate how to construct tight relaxations whether the
matrix is positive definite or not. The structure of the Riemannian manifold is exploited,
and we describe how to compute all elements required for implementing a subgradient
Riemannian descent algorithm.

The resulting method that we propose, referred as APLA-RSG, consists of i) finding
a lower bound and first candidate solution through the solution of a relaxation of the
problem—the APLA part—, and ii) projecting this candidate to the feasible set and
locally improving it with a Riemannian subgradient descent—the RSG part.

Numerical experiments illustrate that the method reaches a competitive objective in
a similar amount of time as other methods from the literature. However, APLA-RSG
benefits from other advantages, namely the fact that it provides a lower bound and
strictly satisfies the balance constraint. The lower bound allows the estimation of an
optimality gap, despite the fact that the problem is non-convex. Such a lower bound
can also prove useful for other methods, so as to assess whether derived solutions are of
acceptable quality.

Further work may include the following extensions. Firstly, we are interested in
considering a more complex model: prohibited operation zones (POZ) [20] could be easily
applied to APLA, but then the local search (RSG) will be limited to a given connected
subset of the feasible set. Secondly, a better way of converting the infeasible solution of
APLA to a feasible one is of interest: currently, it is possible to strongly deteriotate the
performance in term of objective value at the projection step. And finally, the extension
of the method to optimal power flow and more specifically convex or non-convex ACOPF
is of interest.
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